Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Determination of Aeration of Oil in High Pressure Chamber of Hydraulic Lash Adjuster in Valve Train

1999-03-01
1999-01-0646
Use of a hydraulic lash adjuster (HLA) in the valve train has some problems as well as several advantages. One of the problems is less stiffness of valve train, which may be further reduced when aeration of the oil in the oil circuit occurs. The much lower stiffness will lead to malfunction, noise and damage with the valve train. So the aeration of oil in HLA high pressure chamber must be considered in modeling and simulation of the valve train. Since air dissolved capacity in the oil varies with pressure, aeration (undissolved air content) in the high pressure chamber is different from that in the oil circuit. So far, only the air content in the oil circuit has been measured, and few reports have been found on determining the aeration in HLA of an operating valve train. Based on knowledge that HLA collapse is caused by compressibility and leakage of oil, a method of determining the aeration of the oil in the high pressure chamber is introduced.
Technical Paper

A Multi-Zone Model for Diesel Spray Combustion

1999-03-01
1999-01-0916
A quasi-dimensional multi-zone model for diesel spray combustion has been developed. The model contains most of the physical processes of diesel spray combustion, and is simplified and economical. The zone formation is based on the fuel injection parameters. For the wall jet penetration velocity, a new equation is used based on the effect of the impinging free jet on the wall jet. For the fuel evaporation, an approximate solution of the instantaneous variations of droplet diameter is given in the simple algebraic equations based on the individual effect of the evaporation and the heat transfer from ambient gas. The soot emission sub-model calculates the soot concentration. This model has been applied for a direct injection diesel engine. The calculated results have shown a reasonable agreement with the experimental results. A parametric study has been carried out.
Technical Paper

Injection Rate Control in Electronic in-line Pump-Valve-Pipe-Injector Diesel Injection System

1999-03-01
1999-01-0201
Injection rate control is considered as an effective way to optimize diesel combustion process, decrease emission and improve fuel economy. There are many injection rate shaping devices, but most of them still suffer from structure complexity and parameter sensitivity which limit their effectiveness and practicality. A new initial injection rate control method in solenoid-controlled diesel injection systems is introduced in this paper. The basic idea of this method is to maintain a small spill passage between plunger chamber and inlet port during initial injection period. The initial injection rate can be regulated by changing the closing timing of the solenoid-controlled spill valve. This method has the advantages of simple construction, flexible adjustment and stable performance. Computer aided analysis and design based on a simulation program of the system is conducted to compare and select the sizes of the small spill passage according to their effect on injection characteristics.
Technical Paper

Study of the Injection Control Valve in a New Electronic Diesel Fuel System

1998-02-23
980813
At first, the dynamic electromagnetic characteristics of a pulsed solenoid valve is analyzed by experiments. The fast valve response is obtained by material modifications. Then, the intelligent solenoid driving method is discussed. The new techniques of the “active” PWM and the “d2i/dt2” detection are developed for feedback control of the solenoid holding current and the valve closure timing. Finally, the control and diagnosis method for the valve closure duration is investigated. A sensing mechanism utilizing momentary camshaft speed fluctuations of fuel injection pump is presented, which provides the basis for feedback control and diagnosis of the valve closure duration and diesel fuel injection process.
Technical Paper

LDA Measurements of Steady and Unsteady Flow Through the Induction System of a Heavy Duty Diesel Engine

1990-09-01
901576
LDA technique was used to investigate valve exit flow and in-cylinder flow generated by a directed intake port of a heavy duty Diesel engine under steady and unsteady conditions. The results obtained under both steady and unsteady show the flow patterns is very sensitive to the valve lift with this type of intake port. At small valve lift, flow profile around the valve periphery is relatively uniform, the corresponding in-cylinder flow is characteristic of double vortex. With valve lift increasing, the separating region appears near the valve seat in part of the valve periphery, therefore the flow pattern begins to depend on the position around the valve periphery. As a result, the valve exit flow is almost along the elongation of intake port at the maximum lift, the corresponding in-cylinder flow behaves as a solid body of rotation. The motion of valve seems to have little effects on the valve exit flow pattern.
X